Sitemap   |   Follow Us on  
About Us
News & Events
Education & Outreach
Job Opportunities
Contact Us

Research Experiences for Undergraduates

Students can choose a research experience from the areas of astrophysics, biophysics, gravitational wave detection, lasers and photonics, nano-science and advanced materials or radio, optical astronomy and applied physics.
Participants will receive a stipend of $5,000, travel support up to $600, and room and board. *

June 1-August 8, 2014

The University of Texas at Brownsville. Some of the projects will also require that work be carried out at the Laser Interferometer Gravitational wave Observatory (LIGO) in Hanford, Washington.

For students:
The University of Texas at Brownsville Physics and Astronomy REU Application

For High School Teachers:
The University of Texas at Brownsville Physics and Astronomy RET Application



Compact Object Binary Simulations
Faculty Mentor: Dr. Matthew Benacquista
Students will work on a project involving data mining or resampling from the results of binary stellar population synthesis models produced by the StarTrack population synthesis code. The project will be centered on likely gravitational wave sources for either space- or ground-based interferometers. The data mining project will involve identifying specific evolutionary channels that produce gravitational wave sources while the resampling work will involve using the population synthesis output to generate multiple realizations of likely source populations.

Gravitational Wave Detection

Particle Swarm Optimization for Maximum Likelihood Estimation
Faculty Mentor: Dr. Soumya Mohanty
In this project, students will apply their programming and mathematical skills to a novel method for the analysis of gravitational wave data. Particle Swarm Optimization (PSO) is a method which is gaining in popularity in several diverse fields, and its first application to GW data analysis shows a lot of promise: Particle swarm optimization and gravitational wave data analysis: Performance on a binary inspiral testbed [Phys. Rev. D 81 063002 (2010)]. This method basically involves the use of a user specified set of "agents" that move over the parameter space following some simple set of rules which includes rules governing inter-agent communication. For this research, one or two undergraduate students will learn about PSO and develop new ideas about improving the performance of PSO in the specific case of matched filtering for binary inspiral searches. This project is quite feasible for undergraduate students having a good background in programming and it can easily lead to publishable results.

Characterization of background noise in LIGO
Faculty Mentor: Dr. Soma Mukherjee
One of the major areas of research in LIGO is called Detector Characterization. This involves looking and characterizing the real data coming out of the LIGO detectors both in real time, as well as off-line. Noise analysis provides feedback to the experimentalists so that the instrument can be diagnosed for spurious behavior. This provides a great platform for under-graduate students to learn both about the detector physics as well as about the data analysis techniques. Students will look for correlations using methods from information theory like mutual information to detect interdependency between time series from different detector channels. Specifically students will learn about LIGO data, methods of storage and extraction of LIGO data, MATLAB as a data analysis tool, methods of statistical data analysis and methods of looking at glitches seen in the data for understanding their possible origin in the detector sub- systems.

Event identification for LIGO data
Faculty Mentor: Dr. Mario Diaz
Lightning events are one of many sources of environmental transients that contaminate LIGO data. The Los Alamos Spherical Array (LASA) project is a research and development effort at Los Alamos National Laboratory that deploys sensor systems in the field to perform radio- frequency (RF) remote sensing of atmospheric transient events. The predominant atmospheric RF transient events result from lightning discharges. UTB hosts one of the LASA sensors and has an agreement with LANL to access this data. This project will look at the correlation of lighting events from the LASA array in the Gulf of Mexico and LIGO data. In particular "glitches" in the LIGO data stream can be identified as lighting events in the data using electromagnetic environmental sensors on location at the LIGO observatories. When this is discerned clearly the event is marked with a "storm flag". Students will assess the quality of these flags by looking at coincidence with the two data streams from LASA and LIGO.

Engineering an artificially intelligent knowledge base system to boost scientific creativity in diagnosing kilometer scale gravitational wave detectors: A pilot study.
Faculty Mentor: Dr. Cristina Valeria Torres
The LIGO Scientific community is a large community of researchers, this community has the ambitions goal of detecting gravitational radiation, perturbations of space-time. In order to make these detections complex kilometer scale instruments have been constructed around the world. Understanding the behavior of these instruments is critical to ensuring that they run in an optimal fashion. The goal of this particular project is to use artificial intelligence algorithms and "natural" computer to human interfaces that allow the leveraging of instrumental expert knowledge digested into a semi artificially intelligent system. This project, the total electronic information repository (TERI), will be a novel application of digitized expertise (knowledge bases engineering) along with existing large scale homogeneous data. Our goal is to allow researchers to pose more scientifically interesting instrument questions without the burden of traditional human computer interactions. This project will involve the creation of a specialized knowledge engine. Our goal is to create a pilot study to show the usefulness of TERI as an instrument scientists digital assistant. This project is expected to unleash the creativity of instrument

Lasers and Photonics

Modeling and Experimental Studies of the Propagation of Light in Photonic Crystals
Faculty Mentor: Dr. Malik Rakhmanov
Photonic crystals are new materials in which the dielectric constant is engineered to form a regular (periodic) lattice. For example, synthetic opals are photonic crystals made of silica nano spheres, which are arranged, in a face-centered cubic (FCC) lattice. The periodic structure of the photonic crystals leads to interesting new phenomena such as photonic bands and band gaps similar to those known in semiconductor materials. As a result, these new materials possess rather unusual optical properties. In particular, it is expected that the synthetic opals can exhibit negative index of refraction under certain conditions, which can be studied with computer modeling. In the first project, the student will model the propagation of light in opals using FullWave simulation package developed by RSoft which runs on the UTB's multi-node computer cluster. The goal is to explore the negative refraction properties of opals in a fully 3-dimensional model of the FCC lattice. In the second project, the student will study the propagation of a laser beam in opal samples in a table-top interferometer in the optics lab at UTB. The experiments will include studies of refraction and reflection of the laser beam in opal samples and comparison of the experimental results with theoretical predictions.

Characterization of Losses in Optical Cavities
Faculty Mentor: Dr. Volker Quetschke
The characterization of losses in optical cavities provides an important tool to assess the durability and long term development of those cavities and can be used to implement an early warning system about emerging problems during the long time operation of those cavities, for example in the future aLIGO detector. The measurement of the width of the Airy profile of a Fabry-Perot cavity, the so-called cavity bandwidth, yields the total optical losses. REU students will be involved in investigating optical losses in optical cavities in a tabletop experiment.

Beam Pointing in Space Missions
Faculty Mentor: Dr. Volker Quetschke
In future space missions, for example the LISA mission, a space borne gravitational wave detector, or in laser communication between satellites the drift of the spacecrafts can limit the amount of transmitted and received information. In order to help mitigate this effect a technique is needed to measure the beam pointing of the lasers from the far spacecraft and to feed back a correcting signal. This project is investigated at UTB and REU students can be involved in multiple stages of the project, from characterizing the performance of the digital phasemeter electronics to setting up a realistic test bed for small angular changes of the beam.

Radio and Optical Astronomy

Photometric Observations
Faculty Mentor: Dr. Mario Diaz
The CGWA hosts a state of the art small astronomical observatory equipped with a 16 inch Schmidt-Cassegrain Meade, several CCD cameras, spectrographs and additional digital equipment. There are several short-term observational projects including debris observation, photometric observations of eclipsing binary stars and variable stars (i.e. chromospherically variable stars) Students will learn how to observe, collect data utilizing the observatory instrumentation, develop light curves for astronomical objects, analyze it and compare it with existing data for the same objects.


Molecular modeling of peptides
Faculty Mentors: Dr. Juan Guevara and Dr. Natalia Guevara
Molecular modeling has become a powerful tool used in molecular engineering. Students will learn the role of amino acids in protein structure and function. A student is expected to become familiar with and use the protein and nucleic acid databases available in the public domain. Students will use the databases to retrieve information on essential structural elements in proteins of different function, for example, enzymes, transcriptional regulator proteins, etc. Chimeric peptides will be designed from combination of structural elements from different molecules to obtain a new, engineered function. Each design will be evaluated using a molecular modeling program before synthetic chimeras are obtained. Each chimera will be tested for bioactivity in lab and cell assays.

Single Molecule Biophysics Lab
Faculty Mentor: Dr. Ahmed Touhami
We are interested in developing and applying new technologies for detecting, tracking, and manipulating single molecules in living cells. In particular we are combining optical trapping (OT) and single molecule fluorescence (SMF) with real-time observations of the dynamic behavior of single proteins, to determine the mechanisms of action at the level of an individual molecule, and to explore heterogeneity among different molecules within a population. This highly multidisciplinary project provides numerous research and training opportunities for undergraduate and graduate students to work at the interface of physics, chemistry, biology, and nanotechnology.

Nano-science and Advanced Materials

Superlattice structures for sustainable thermal energy harvesting
Faculty Mentor: Dr. Karen Martirosyan
Thermoelectric (TE) materials that generate electricity from waste heat sources are an ideal solution to the search for sustainable energy. The ZT of a thermoelectric material is a dimensionless unit that is used to compare the efficiencies of various materials. We propose to increase ZT value of TE materials by assembling low-dimensional geometries combining single wall carbon nanotubes with layered perovskites to form superlattice periodical structures. The superlattice structures will assist to enhance the thermal phonon scattering and increasing electron mobility, which improves TE efficiency. We plan to fabricate several nanostructured complexes by using methods that we recently developed. The proposed research includes the following basic tasks: (i) identifying the stable superlattice structures for TE materials with high figures of merit ZT; (ii) producing p-type and n-type of TE matrix nanocomposites; (iii) self- assembling fabrication and testing of TE devices suitable for small-scale power system for energy harvesting. The students will be exposed to the advanced nanostructured technology development.

Applied Physics

Developing an inexpensive eye tracking wearable device using commodity hardware for general research applications.
Faculty Mentor: Dr. Cristina Valeria Torres
Tracking the human gaze is useful in many areas of research. Current technologies which provide robust rapid eye tracking are prohibitively costly. Tracking solutions which are significantly cheaper perform much more poorly. In general eye tracking technology is not a wearable technology and robust tracking solutions are expensive or cumbersome. As electronic components continue to shrink in size and increase in computing capacity, wearable versions of common sensing devices are being explored. The goal of this project is to explore the feasibility and ultimately develop a wearable electrooculogram (or similar) type of device using readily available microprocessors and sensor components. The wearable device should be both robust and inexpensive to enable more widespread use of eye tracking techniques in other areas of research.



Department of Physics and Astronomy • UTB • One West University Boulevard • Brownsville, TX 78520
Main Office: LHSB 2.228 • Phone: 956-882-6779 • Fax: 956-882-6726


Copyright © 2009 The University of Texas at Brownsville. All Rights Reserved.
Site designed by Academic Web Pages.